
12
th

 Generative Art Conference GA2009

 Page 1

Structural Synthesis using a

Context Free Design Grammar Approach

Mikael Hvidtfeldt Christensen, MSc.

Aarhus, Denmark.

structuresynth.sf.net

e-mail: mikael@hvidtfeldts.net

Abstract

This paper introduces Structure Synth, a 3D structure generator based on design
grammar specifications.

Noam Chomsky pioneered the use of formal grammars to describe the structure and
syntax of language. These formal grammars were classified according to their
expressive power. Of special importance here is the class of Context Free
Grammars, originally believed to be powerful enough to model natural languages.
While Chomsky's formal grammars describe structure in one-dimensional strings
(symbolic sequences), Chris Coyne created the Context Free Design Grammar, an
extension of the formal grammars modeling two-dimensional structures using a
simple set of primitives (e.g. squares and circles).

Structure Synth is the natural extension of these ideas into three dimensions. The
user specifies a grammar, and the program generates one of the many possible
structures adhering to the syntax of the grammar. Compared to general-purpose
programming, the restrictions of context-free systems encourage the user to discover
and explore the systems. And even though the syntax limits the complexity of the
rules, the resulting structures are often highly complex and nearly always
unpredictable and surprising.

Introduction

Structure Synth is a software system for creating and exploring structures defined by
a set of transformation rules. This paper describes the ideas behind Structure Synth
together with an introduction to the methods it is inspired by.

The paper is organized as follows: First, formal grammars are introduced and it is
discussed how they can be used for generating content. This is followed by a
description of how Context Free Design Grammars can be used to generate two-
dimensional graphical content.

12
th

 Generative Art Conference GA2009

 Page 2

The second part describes how Structure Synth extends these ideas into three
dimensions. The purpose is not to give a complete reference to all aspects of the
application, but to illustrate the syntax and provide examples of the different types of
structure that can be generated.

The paper concludes with a discussion of why context-free grammars are interesting
in relation to generative art, and presents some possible future directions for
Structure Synth.

Formal Grammars

A formal language is a set of strings, where each string is a finite sequence of
symbols. Formal languages can be specified in different ways: for languages with a
finite number of strings, it would be possible to list all strings, but a more convenient
way is to describe a formal language by a set of rules, which may generate the
strings in the vocabulary. It is important to note that formal languages have no direct
connection to the natural languages. Formal languages are mathematical, formalized
concepts. They may be used when trying to describe or model the structure of
natural languages, but bear in mind that the entities in a formal language (the strings
and the symbols) may represent structure at many different levels. For instance, the
strings in a formal language could represent words, sentences, or paragraphs of text
in a natural language depending on the level of structure being modeled.

Noam Chomsky studied the structure of formal languages and created a hierarchy
that classified the languages according to the generative power of their formal
grammar [1]. A formal grammar is one way to describe or generate a formal
language. A formal grammar is a set of rules (sometimes called production rules)
which operates on two kinds of symbols: the terminal symbols, which are the
symbols that the strings in the formal language are composed of, and the non-
terminals, which are intermediate symbols used during the derivation. By applying
the production rules to a start symbol in the formal grammar, all the possible strings
in the formal language are created. For instance, consider the following toy-example
for describing a small subset of the English language:

S → NP VP
VP → V NP
NP → DET N
DET → the | a | an | ...
N → dog | boy | cat |

Here the start symbol is a sentence (S), which is composed of a noun phrase (NP)
and a verb phrase (VP). The verb phrase again consists of a verb (V) and a noun
phrase, and the noun phrase consists of a determiner (DET) and a noun (N). These
are the non-terminals of this toy grammar. Finally, there are a few production rules
for substituting the noun and determiner with terminals, which here are actual
English words. An example of a sentence analyzed (or constructed) using this
grammar is shown in Figure 1.

12
th

 Generative Art Conference GA2009

 Page 3

Figure 1: An example of using a formal grammar to describe the structure in an
English sentence. Here the strings in the grammar correspond to complete
sentences, and the terminal symbols are English words. The structure is shown in a
hierarchical tree, corresponding to the production rules listed above.

The production rules above all share a specific simple form: they consist of a single
symbol, which transforms into one or more new symbols. Thus, when deriving strings
using the grammar, it is not necessary to take the context (the surrounding symbols)
into account, which is referred to as a context-free transformation. It is also possible
to construct production rules which are context-sensitive. For instance, a
transformation rule of the form: αAβ → αXβ would imply that A could be substituted

by X, but only if the A was surrounded by α and β. This is an example of a context-

sensitive transformation.

The hierarchy Chomsky created for the formal grammars contains the following
classes:

Type 0 All formal grammars. Here there are no restrictions on the
production rules.

Type 1 Context-sensitive grammars. These are grammars that can be
expressed using context-sensitive production rules, such as the
one mentioned above: αAβ → αXβ where α and β are arbitrary

symbols, and A is a non-terminal and X a non-empty symbol.

Type 2 Context-free grammars. Here the left side of the production rules
consists of single non-terminal. This class of grammars has been
used to study the structure of several natural languages [19]. In
addition, the syntax of many computer languages (such as Java
and C#) belongs to this class

1
.

1
 The Backus-Naur notation [19], which is often used to describe the format of

computer languages, is a notation for context-free grammars.

12
th

 Generative Art Conference GA2009

 Page 4

Type 3 Regular expressions. This class puts additional constraints on the
right side of the production rule. It will not be discussed here,
since it is not relevant for following discussion.

Formal grammars are often used to analyze and identify structure in linguistics and
computer science. But instead of starting with a string in a formal language and
tracing it back to the start symbol in the grammar, the reverse process is also
possible. That is, given the production rules for a formal language, we can generate
arbitrary strings in the vocabulary of that language. This is easy since we can just
apply randomly chosen production rules to the start symbol until only terminal
symbols are left. For instance, given a grammar as shown in Figure 1, we could
generate syntactically correct English sentences.

SCIgen [2] is an example of a generator, which builds random computer science
papers using a context-free grammar. Several examples exist where papers created
by SCIgen have been accepted by editors that were not aware that the content was
computer generated. The most notable example is a paper by SCIgen, which was
accepted in the Elsevier journal ‘Applied Mathematics and Computation’ in 2007 (a
placeholder page for the now removed article can be found at [3]).

Here is an example of its output:

....In our research, we use pseudorandom methodologies to show that the
transistor and the transistor are regularly incompatible. On a similar note,
we emphasize that PloySerfism manages compilers. Indeed, DHTs and
voice-over-IP have a long history of interfering in this manner. However,
model checking might not be the panacea that theorists expected.

In this position paper we explore the following contributions in detail. For
starters, we prove that gigabit switches can be made unstable, cooperative,
and adaptive. We demonstrate not only that the infamous stable algorithm
for the construction of randomized algorithms by Kobayashi et al. is in Co-
NP, but that the same is true for massive multiplayer online role-playing
games.

We proceed as follows. We motivate the need for extreme programming.
Second, we place our work in context with the prior work in this area.
Ultimately, we conclude......

And here is a fragment of the hand-made context-free grammar SCIgen use:

EVAL_ANALYZE_ONE → note the heavy tail on the CDF in
EXP_FIG, exhibiting DIFFERENT EVAL_MEASUREMENT
EVAL_ANALYZE_ONE → the many discontinuities in the
graphs point to DIFFERENT EVAL_MEASUREMENT introduced
with our hardware upgrades
EVAL_ANALYZE_ONE → bugs in our system caused the
unstable behavior throughout the experiments
EVAL_ANALYZE_ONE → Gaussian electromagnetic

12
th

 Generative Art Conference GA2009

 Page 5

disturbances in our EXP_WHERE caused unstable
experimental results
EVAL_ANALYZE_ONE → operator error alone cannot account
for these results

Here the upper cased words are the non-terminals, which are to be substituted. This
is only a small subset - the complete grammar contained approximately 3000
production rules. As is evident the grammar contains large contiguous fragments of
text. Still the resulting output shows a great deal of variation.

Context Free Design Grammar

Formal grammars produce strings, that is, one-dimensional sequences of symbols.
But for graphical content, we usually need two or three dimensions. One way to
achieve this would be by interpreting the one-dimensional sequence as an encoding
that produces a two- or three-dimensional result. For instance, each symbol in the
sequence could be interpreted as an action such as 'move forward one unit', 'turn left
90 degrees', etc. This is the approach Lindenmayer systems [4] use to produce
graphical output. However, Lindenmayer systems require two decoupled steps: the
generation of a 1-dimensional sequence, and the subsequent transformation into a
2D or 3D illustration.

A more direct approach was suggested by Chris Coyne in his Context Free Design
Grammar (CFDG) [5]

2
. Similar to formal grammars a Context Free Design Grammar

has production rules and non-terminal and terminal symbols. The terminal symbols
are now geometrical primitives - in Chris Coyne’s original implementation circles and
squares were used as the basic primitives.

The Context Free Design Grammar extends the syntax of the formal grammars by
including transformation operators

3
. These transformation operators modify the

current rendering state. Possible transformations include the rotation and scaling of
the current coordinate system and modifications of the hue or saturation of the
current drawing color. Notice that while rendering states have been introduced in the
CFDG, the actual expansion of the non-terminal symbols is still context-free - it does
not depend on the history or rendering state of the system. As is the case for formal
grammars, one non-terminal symbol may have several different possible
substitutions. The CFDG makes it possible to assign different weights to the different
production rules for a given symbol.

2
 Chris Coyne had previously experimented with using grammars for producing text.

The SCIGen project mentioned in the previous section was inspired by a high school
paper generator created by Chris Coyne.

3
 The Context Free Art developers use a different terminology - their adjustment rules

correspond to the transformation operators in this paper.

12
th

 Generative Art Conference GA2009

 Page 6

The following is an example of a Context Free Design Grammar:

startshape SEED

rule SEED {
 SQUARE {}
 SEED { y 1.2 size 0.99 rotate 2.5 brightness 0.0015 }
}

rule SEED 0.04 {
 SQUARE {}
 SEED { y 1.2 s 0.9 r 1.5 flip 90 }
 SEED { y 1.2 x 1.2 s 0.8 r -60 }
 SEED { y 1.2 x -1.2 s 0.6 r 60 flip 90 }
}

Now by applying the transformation rules to the start rule, outputs such as the ones
in Figure 2 can be created. These images were created using Context Free Art [6],
an implementation of a Context Free Design Grammar created by Mark Lentczner
and John Horigan.

Figure 2: An example of a Context Free Art system. The three structures are
instances of the same system, but with different random seeds.

Chomsky's formal languages consist of finite strings. In contrast, systems specified
by a context-free design grammar often emit an infinite number of terminals. In
practice, this is overcome by applying some kind of termination rule, such as
stopping the production if the primitives become too small to be visible. Also,
whereas the natural representation of a string in a formal language is a sequence of
symbols, Context Free Design Grammars produce rule expansions which are
naturally represented in abstract, hierarchical trees (a rule may spawn one or more
rule calls, corresponding to new branches in these hierarchical trees).

Similar to Context Free Design Grammars, most Lindenmayer systems also grow
potentially unlimited strings. Lindenmayer also introduced a notation for representing
hierarchical trees in his Lindenmayer systems [4]. By interpreting brackets in the
output as creating new branches, it becomes possible to create tree-like hierarchical
structures. An output such as A[B][C] would be interpreted as A being the root of the

12
th

 Generative Art Conference GA2009

 Page 7

tree with two branches, B and C
4
. Similar to Context Free Design Grammars,

Lindenmayer also described the use of multiple production rules with different
weights - something he referred to as Stochastic Lindenmayer systems. This means
the Context Free Design Grammars are very close in expressive power to what
Lindenmayer would have classified as a Stochastic Context-Free Bracketed L-
system. CFDG systems offer a couple of advantages, though. The CFDG unites the
substitution rules and the geometrical operators. This makes the representation
slightly more intuitive and it makes it possible to implement more flexible termination
rules. For instance, the rule expansion can be terminated, whenever the geometrical
primitives become too small to be visible. A similar termination rule would be difficult
to implement in a Lindenmayer system, since the rule expansion is separated from
the geometric representation.

Structure Synth

Structure Synth extends Context Free Art into three dimensions. Its syntax is derived
from the original Context Free Design Grammar but with a few key differences.

Termination criteria: In Context Free Art the recursion automatically terminates
when the objects produced are too small to be visible. This is a very elegant solution,
but it is not possible to extend to a dynamic 3D world, where the user can move and
zoom with the camera. Instead, several options exist in Structure Synth for
terminating the rendering, such as specifying a maximum recursion level, or a
maximum number of objects, or setting a fixed minimum size.

Transformations and primitives: Since Structure Synth operates in three-
dimensional space, a new set of transformations and primitives was necessary. The
transformations include translations, flipping and rotations about the three Cartesian
axes, and the new set of primitives include volumetric objects such as spheres,
boxes and lower dimensional objects such as triangles, lines and dots.

Figure 3: Rule retirement and substitution. An extension allows rules to be changed
after a number of iterations. In this case, a rule makes spatial subdivisions until a

4
 Implementation-wise, the left bracket would push the current state, and the right

bracket would pop the current system state.

12
th

 Generative Art Conference GA2009

 Page 8

specified recursion depth is reached - this makes it possible to create Menger fractal
variations such as these [7].

Language extensions: A few new features were added to Structure Synth. A rule
retirement system makes it possible to substitute one rule for another after a
specified maximum recursion level. Even though this is a slight violation of the
context-freeness, this was included in order to make it possible to create objects
such as those in Figure 3. A new coloring system was also introduced making it
possible to use random colors from different color pools, including sampling colors
from a bitmap file. Random Seed Synchronization (See Figure 9) makes it possible
to synchronize the random number streams whenever a rule branches (calls two or
more new rules).

Language reductions: The start shape is no longer explicitly declared. Instead, all
commands at top-level scope are implicitly converted into an anonymous start rule.
In addition, Context Free Art defines two different forms of modifiers, which are
placed after the rule designator: square brackets and curly brackets, where the
modifier order is not significant for the square brackets. Structure Synth, on the other
hand, only uses curly brackets placed before the rule designator, and the
transformation order is always significant.

The following Structure Synth system creates the output shown in Figure 4:

set background white

{ h 30 sat 0.7 } seed
{ ry 180 h 30 sat 0.7 } seed

rule seed weight 100 {
 box
 { y 0.4 rx 1 s 0.995 b 0.995 } seed
}

rule seed weight 100 {
 box
 { y 0.4 rx 1 ry 1 s 0.995 b 0.995 } seed
}

rule seed weight 100 {
 box
 { y 0.4 rx 1 rz -1 s 0.995 b 0.995 } seed
}

rule seed weight 6 {
 { rx 15 } seed
 { ry 180 h 3 } seed
}

12
th

 Generative Art Conference GA2009

 Page 9

Figure 4: Three-dimensional version of Figure 2 created in Structure Synth.

Differences to procedural programming

A Structure Synth grammar like the one above may look similar to a normal
computer program – the syntax is quite close to the syntax of procedural
programming languages like C, Java, Pascal, or Basic. And instead of thinking of the
system as a grammar and its output as strings in the language specified by this
grammar, it is perhaps easier to think of the grammar as a restricted subset of an
ordinary computer language, just without parameter passing and conditional logic.

The similarities may be a bit deceptive though, since there are two major differences:
functions (which are the rules in the CFDG terminology) may have multiple
definitions each with an arbitrary weight. Moreover, recursion is handled breadth first.

The last point requires further explanation: Whenever a procedural programming
language executes a function or procedure, it does so in sequential order – the
individual statements in the function are executed in the order of appearance

5
. If one

of the statements is a procedure call, this procedure is executed and must complete
before the next statement is executed. The state of the currently executing function
(the return address pointer, local variables, etc.) is typically stored in stack frames on
a call stack, in order to be able to return after executing a function. Put differently,

5
 The compiler may have some liberty to reorder the instruction order between the

defined sequence points in the language, but this is not relevant for our discussion.

12
th

 Generative Art Conference GA2009

 Page 10

this means the function call tree for the program is traversed depth-first. Recursion in
Structure Synth is handled differently. Instead of a call stack, there is generational
queue system: whenever a rule is encountered, all sub rule calls and primitives in the
rule definition are pushed onto a new queue that will be evaluated at the next
generation. This means the rules are traversed breadth first – all calls at the same
recursive depth are processed at the same time. Consider the following example:

Procedure recurse() {
 recurse();
 drawBox();
}

Rule recurse {
 recurse
 box
}

Example of recursion in a traditional computer language to the left and in
Structure Synth to the right.

A traditional programming language would never reach the ‘drawBox()’ function call.
It would recurse until the call stack overflowed. In contrast, in Structure Synth the first
generation would process both the ‘recurse’ and 'box' statement. (The ‘recurse’
statement would be expanded into new 'recurse' and 'box' statements and scheduled
for execution on the next generation queue).

Technical implementation notes

Structure Synth provides a graphical environment with a multiple tab editor, syntax
highlighting, and OpenGL preview. Besides the integrated OpenGL view, it is
possible to export structures to third-party software (such as Sunflow [8] and POV-
Ray [9]) using an extensible template based export system.

Structure Synth is written in C++ using the Nokia Qt framework [10]. It uses the
OpenGL API [11] for visualization and the Mersenne Twister RNG [12] for random
numbers (the C standard library random number generator is insufficient, since two
independent random number streams are used: one for geometry and one for
colors). It uses a hand-written recursive descent parser to parse the grammar, from
which a binary representation of the transformation rules is created. All geometrical
transformations (translation, rotation, and scaling) are stored in 4x4 (homogeneous)
matrices.

Structure Synth is open source (dual licensed under the GPL and LGPL [13]) and
cross-platform (including Windows XP and Vista, Mac OS X, Linux, and FreeBSD).
The source and binary files are hosted at SourceForge and can be downloaded from
[14].

12
th

 Generative Art Conference GA2009

 Page 11

Figure 5: Structure Synth graphical user interface showing a tabbed interface, with a
syntax-highlighting editor and an integrated OpenGL preview.

Examples of systems

The purpose of this section is to illustrate some typical aspects of Structure Synth.

Structure Synth makes it possible to formulate systems, which are deterministic
(reproducible) each time the system is instantiated, but also makes it possible to
create stochastic systems with inherent random behavior (see Figure 7). Yet, the
recursive nature of both types of systems often results in very complex images. Many
of the stochastic Structure Synth systems also display a lot of diversity. Some
examples of different instances with the same system are shown in Figure 6.
Stochastic systems with near-continuous transformations (meaning the state is
changed slowly) often look organic or biological. (See Figure 8)

While some deterministic systems (such as the Menger fractal in Figure 3) may
exhibit self-similarity, it is also possible to create stochastic systems which are self-
similar in Structure Synth. This may be done by using the random seed
synchronization, which makes it possible to spawn branches that will be governed by
identical random number sequences

6
.

6
 Normally ambiguous rule substitutions are resolved using a random number

generator. This means that two different branches, each starting with identical

12
th

 Generative Art Conference GA2009

 Page 12

Figure 6: Diversity. All of the images above are instances of the same grammar but
with different random seed. Images: The Nabla System [15], with seeds 29, 338, 7
(radial), 201.

Figure 7: Deterministic versus stochastic systems. The picture on the left has no

symbols, may end up with different expansions. The random seed synchronization is
a special command for synchronizing two different branches - ensuring their
expansion will be identical.

12
th

 Generative Art Conference GA2009

 Page 13

ambiguous rules. In contrast, the structure on the right will be different every time the
system is instantiated. [16]

Figure 8: Organic. These two images are variants of the Nouveau system [17] - a
system based on random continuous transformations. Such images often have an
organic appearance.

Figure 9: Stochastic self-similarity. The principal form of the ring system above is
stochastic, yet the system above copies itself on many scales [18].

Constrained systems and Generative Art

The first part of this paper discussed how systems of various complexity (expressive
power) can be generated using formal grammars, and how this led to design
grammars and Structure Synth.

12
th

 Generative Art Conference GA2009

 Page 14

So why restrict Context Free Art and Structure Synth to context-free systems? It is
well known that it can be computationally hard [19] to analyze the structure of
context-sensitive systems, but it is not much harder to generate structures based on
a more powerful grammar. The grammar in Structure Synth could easily be extended
to context-sensitive systems. However, context-free systems have the nice property
of being complex enough to be interesting, while not being omnipotent (in the
general-purpose programming languages sense), making them very suitable for
generative art:

Even though no definitive definition of 'generative art' exists, it has been suggested
that generative art is about creating and exploring systems, without being too much
in control (see e.g. [20]). When generating structures, it should not be possible to
anticipate how a given structure turns out by looking at the rules. There should be a
sense of non-determinism and surprise in the result. The system needs not to
necessarily be driven by random choices in order to achieve this – the Mandelbrot
set is a good example of this: nobody would have been able to imagine how complex
images a simple system like “z→ z

2
+c" could create, yet there is nothing stochastic in

the generation of Mandelbrot sets. Choosing to work within a restricted rule system is
a way to give up some control and to be forced to think differently. It becomes
necessary to explore and work within the limitations of the system, which may lead to
interesting and unexpected results.

More generic languages, for instance the popular Java-based Processing
environment [21], have no limitations in expressiveness

7
. Does this mean that

Processing is not suitable for generative art, because of its universal expressive
power? Well, the answer is of course that Processing is very suitable and is widely
used by the generative art community. In fact, any Structure Synth or Context Free
Art system could be created in Processing/Java because of this universal power.
However, Processing is also suitable for many other applications, such as Data
Visualization and other non-generative tasks. Context Free Art and Structure Synth
on the other hand force you to explore generative systems.

Conclusions and future work

This paper introduced Structure Synth and described its heritage from Chomsky's
grammars and the Context Free Design Grammar by Chris Coyne. It has been
argued (but not formally proved) that these systems are closely related to stochastic
context-free bracketed Lindenmayer-systems, but different from procedural
programming languages. Finally, the potential benefits from working with constrained
systems have been discussed.

7
 Java, like all other general-purpose programming languages, is Turing complete -

meaning they can express arbitrary computations. This places their output in the
most powerful 'Type 0' category of the Chomsky Hierarchy [19].

12
th

 Generative Art Conference GA2009

 Page 15

The next version of Structure Synth will focus on two new features: a new internal
raytracer for creating high-resolution output directly in Structure Synth, without
having to use external third-party software. It will also include automation and
scripting of the structure creation using a built-in JavaScript interpreter: this will make
it possible to vary internal grammar parameters and create animations. Integration
with other programs (such as VVVV [22] and Blender [23]) is in progress and there
will likely be better integration with other software systems as well.

On a longer time frame, there are several ideas that might be pursued. One
possibility is to extend Structure Synth to make it suitable for live performances - by
making it possible to interact with and control the model building in real-time.
Another idea is to implement topological operations on grid meshes (using
operations such as those used by TopMod [24]) instead of working with fixed
primitives. Finally, several people have suggested a user interface for automatically
creating a set of 'mutated' systems, making it possible to evolve the systems in a
direction supervised by the user (evolutionary art / design).

Acknowledgements

I would like to thank René Thomsen and Kamma O. Hansen for commenting on and
proofreading this paper. I would also like to thank the users of Structure Synth who
have provided valuable and encouraging feedback. In particular, I would like to thank
the Structure Synth Flickr community for many interesting discussions and
suggestions.

References

[1] N. Chomsky (1956): Three models for the description of language. IRE
Transactions on Information Theory (2): 113–124

[2] J. Stribling, M. Krohn, D. Aguayo (2005): SCIgen - an automatic cs paper
generator, pdos.lcs.mit.edu.

[3] R. Mosallahnezhad (2007): Cooperative, Compact Algorithms for Randomized
Algorithms. Applied Mathematics and Computation, Elsevier.

[4] P. Prusinkiewicz, A. Lindenmayer (1990): “The Algorithmic Beauty of Plants.”

[5] Chris Coyne's CFDG description: http://www.chriscoyne.com/cfdg/.

[6] C. Coyne, M. Lentczner, J. Horigan: Context Free Art.
http://www.contextfreeart.org/

[7] Menger variations at Flickr: http://www.flickr.com/photos/syntopia/3199111727/

12
th

 Generative Art Conference GA2009

 Page 16

[8] Sunflow. http://sunflow.sourceforge.net/

[9] POV-Ray - The Persistence of Vision Raytracer. http://www.povray.org/

[10] Nokia Qt. http://qt.nokia.com/

[11] OpenGL. http://www.opengl.org/

[12] Mersenne Twister. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

[13] GPL and LGPL. http://www.gnu.org/licenses/gpl.html

[14] Structure Synth at SourceForge: http://structuresynth.sourceforge.net/

[15] Nabla System at Flickr: http://www.flickr.com/photos/syntopia/3401189363/

[16] Deterministic versus Stochastic system:
http://www.flickr.com/photos/syntopia/3909688627/ and
http://www.flickr.com/photos/syntopia/2244330735/

[17] Nouveau System. http://www.flickr.com/photos/syntopia/3571168238/

[18] Synctor. http://www.flickr.com/photos/syntopia/3272377029/

[19] J. C. Martin (1991): Introduction to Languages and the Theory of Computation.
McGraw-Hill.

[20] P. Galanter (2003): What is Generative Art? Complexity Theory as a Context for
Art Theory. Generative Art 2003 Conference.

[21] Processing 1.0. http://processing.org/

[22] VVVV: a multipurpose toolkit. http://vvvv.org

[23] Blender - open source 3D content creation suite. http://www.blender.org/

[24] TopMod3D - topological mesh modeler. http://www.topmod3d.org/

